L–regularity for Parabolic Operators with Unbounded Time–dependent Coefficients

نویسنده

  • MATTHIAS GEISSERT
چکیده

We establish the maximal regularity for nonautonomous OrnsteinUhlenbeck operators in L-spaces with respect to a family of invariant measures, where p ∈ (1,+∞). This result follows from the maximal L-regularity for a class of elliptic operators with unbounded, time-dependent drift coefficients and potentials acting on L(R ) with Lebesgue measure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carleman Inequalities and the Heat Operator

1. Introduction. The unique continuation property is best understood for second-order elliptic operators. The classic paper by Carleman [8] established the strong unique continuation theorem for second-order elliptic operators that need not have analytic coefficients. The powerful technique he used, the so-called " Carleman weighted inequality, " has played a central role in later developments....

متن کامل

Nonautonomous Kolmogorov Parabolic Equations with Unbounded Coefficients

We study a class of elliptic operators A with unbounded coefficients defined in I × R for some unbounded interval I ⊂ R. We prove that, for any s ∈ I, the Cauchy problem u(s, ·) = f ∈ Cb(R ) for the parabolic equation Dtu = Au admits a unique bounded classical solution u. This allows to associate an evolution family {G(t, s)} with A, in a natural way. We study the main properties of this evolut...

متن کامل

On maximal parabolic regularity for non-autonomous parabolic operators

We consider linear inhomogeneous non-autonomous parabolic problems associated to sesquilinear forms, with discontinuous dependence of time. We show that for these problems, the property of maximal parabolic regularity can be extrapolated to time integrability exponents r 6= 2. This allows us to prove maximal parabolic L r-regularity for discontinuous non-autonomous second-order divergence form ...

متن کامل

Maximal L Error Analysis of Fems for Nonlinear Parabolic Equations with Nonsmooth Coefficients

The paper is concerned with Lp error analysis of semi-discrete Galerkin FEMs for nonlinear parabolic equations. The classical energy approach relies heavily on the strong regularity assumption of the diffusion coefficient, which may not be satisfied in many physical applications. Here we focus our attention on a general nonlinear parabolic equation (or system) in a convex polygon or polyhedron ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009